HW III , Math 530, Fall 2014

Ayman Badawi

QUESTION 1. (i) Let $(G, *)$ be a group of even order. Show that there exists $a \in G$ such that $a^{2}=e$.
(ii) Let $(G, *)$ be a group and $a, b \in G$. Suppose that $a * b=b * a^{-1}$ and $b * a=a * b^{-1}$. Show that $a^{4}=b^{4}=e$.
(iii) Prove that a group $(G, *)$ is abelian if and only if $(a * b)^{-1}=a^{-1} * b^{-1}$ for all $a, b \in G$.
(iv) Let $(G, *)$ be a group and $a \in G$. Suppose that $a^{n}=e$ for some integer $n \geq 2$. Prove that $|a|$ must divide n.
(v) Let $(G, *)$ be a group and $a, b \in G$. Show that $\left(a * b * a^{-1}\right)^{n}=a * b^{n} * a^{-1}$ for all integers n.
(vi) Let $A=\{1,2,3\}$, and let $P(A)$ be the power set of A. We know that $|P(A)|=8$. Define a binary operation $*$ on $P(A)$ such that $x * y=(x-y) \cup(y-x)$ for every $x, y \in P(A)$. Prove that $(P(A))$, *) is a group (Do not show associative, closure...these are clear). Construct a subgroup H of $(P(A), *)$ that has exactly 4 elements. Prove that $P(A) / H$ is a group by constructing the Caley-table of $P(A) / H$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

