MTH 530 Abstract Algebra I Fall 2014, 1–1

HW III , Math 530, Fall 2014

Ayman Badawi

QUESTION 1. (i) Let (G, *) be a group of even order. Show that there exists $a \in G$ such that $a^2 = e$.

(ii) Let (G, *) be a group and $a, b \in G$. Suppose that $a * b = b * a^{-1}$ and $b * a = a * b^{-1}$. Show that $a^4 = b^4 = e$.

(iii) Prove that a group (G, *) is abelian if and only if $(a * b)^{-1} = a^{-1} * b^{-1}$ for all $a, b \in G$.

- (iv) Let (G, *) be a group and $a \in G$. Suppose that $a^n = e$ for some integer $n \ge 2$. Prove that |a| must divide n.
- (v) Let (G, *) be a group and $a, b \in G$. Show that $(a * b * a^{-1})^n = a * b^n * a^{-1}$ for all integers n.
- (vi) Let $A = \{1, 2, 3\}$, and let P(A) be the power set of A. We know that |P(A)| = 8. Define a binary operation * on P(A) such that $x * y = (x y) \cup (y x)$ for every $x, y \in P(A)$. Prove that (P(A)), * is a group (Do not show associative, closure...these are clear). Construct a subgroup H of (P(A), *) that has exactly 4 elements. Prove that P(A)/H is a group by constructing the Caley-table of P(A)/H.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com